auf der Seite der Gesellschft für Didaktik der Mathematik. Die GDM ist eine wissenschaftliche Vereinigung mit dem Ziel, die Didaktik der Mathematik – insbesondere in deutschsprachigen Ländern – zu fördern und mit entsprechenden Institutionen in anderen Ländern zusammenzuarbeiten. Die Mathematikdidaktik beschäftigt sich mit dem Lernen und Lehren von Mathematik in allen Altersstufen.
Innerhalb der GDM gibt es vielfältige Arbeitskreise zu speziellen Themen.
Die Arbeitskreise bilden eine formlose Vereinigung verschiedener Experten aus der Mathematikdidaktik, die dasselbe Interesse teilen und ein gemeinsames Ziel verfolgen. Jeder Arbeitskreis verfügt über eine Leitung bestehend aus zwei Personen. Die Arbeitskreise sind offen für alle Interessierten Mitglieder der GDM. In der Regel treffen sich die Arbeitskreise mehrmals im Jahr zu Tagungen und Sitzungen auf der Jahrestagung der GDM.
Eine Übersicht aller aktuellen Arbeitskreise mit jeweiliger Kurzbeschreibung und Kontaktperson finden Sie unten.
Kommissarische Leitung
Sarah Beumann (beumann@uni-wuppertal.de)
Sebastian Geisler (geisler@imai.uni-hildesheim.de)
Aktuelles
Der AK Weltbilder ist vor vielen Jahren aus der Idee von Günter Törner entstanden. In den letzten Jahren wurde der AK nicht weiter fortgeführt. Im Zuge der Neugestaltung der GDM Homepage kam die Idee auf, diesen AK wieder zu beleben. So kam es zu der kommissarischen Leitung von Sebastian Geisler und Sarah Beumann, in Rücksprache mit Günter Törner, Benjamin Rott und Reinhard Oldenburg.
Zur Gründungszeit des AK Weltbilder war die Beliefsforschung stark geprägt durch die Arbeiten von Grigutsch, Raatz und Törner und der dortigen Definition der mathematischen Weltbilder. Aktuell ist die Forschung weiter voran geschritten, weitere Strömungen haben sich gebildet (auch unabhängig der Mathematikdidaktik) und verschiedenste Einflussfaktoren konnten herausgestellt werden. Damit diese Breite auch Anklang in der AK-Arbeit findet, würden wir den Titel des AK gerne größer fassen. Mittlerweile werden sowohl kognitive als auch affektive Komponenten mit den mathematischen Beliefs assoziiert, sodass wir eine Umbenennung in “Affekt, Motivation und Beliefs“ vorschlagen. Diesen Vorschlag haben wir auf der GDM-Tagung mit allen Interessierten abgesprochen und dieser Vorschlag wurde einstimmig von allen Anwesenden befürwortet. Zukünftig soll neben einem Treffen auf der GDM, eine Herbsttagung durchgeführt werden. Die genaue Zielsetzung des AKs, die Wahl der AK-Leitung sowie erste Ideen sollen auf einer kommenden Frühjahrstagung (vor. im März) in Wuppertal mit allen Interessierten ausgearbeitet werden.
Leitung
Gabriele Kaiser gabriele.kaiser@uni-hamburg.de
Timo Leuders leuders@ph-freiburg.de
Sprecherin
Renate Motzer renate.motzer@math.uni-augsburg.de
Stellvertretende Sprecherinnen
Andrea Blunck andrea.blunck@uni-hamburg.de
Christine Scharlach christine.scharlach@fu-berlin.de
Ziele und Inhalte
Der Arbeitskreis Frauen und Mathematik entstand im Jahr 1989 und wurde von Cornelia Niederdrenk-Felgner und Gabriele Kaiser gegründet. Mitglieder des Arbeitskreises sind Frauen und Männer, die sich für genderspezifische Fragen in der Mathematikdidaktik interessieren. Jedes Jahr im Herbst organisiert der Arbeitskreis eine “Herbsttagung”.
Termine & Veranstaltungen
Die nächste Tagung des Arbeitskreises wird am 6.-7.10.2022 durchgeführt, falls es wieder zu einer digitalen Sitzung kommt. Sollte ein Treffen in Präsenz möglich sein, so wird dies vom 7.-8.10.2022 stattfinden (Ort wird noch bekannt gegeben).
Link zur externen AK Homepage
Leitung
Prof. Dr. Andreas Filler (HU Berlin) filler@math.hu-berlin.de
Prof. Dr. Anselm Lambert (Universität des Saarlandes) lambert@math.uni-sb.de
Ziele und Inhalte
Der Arbeitskreis befasst sich mit allen relevanten Themen rund um das Lehren und Lernen von Geometrie – sowohl recht elementarer geometrischer Inhalte in der Primarstufe und der Sekundarstufe I als auch weiterführender Themen, die sich vor allem für die Begabtenförderung eignen. Hauptziel des Arbeitskreises ist, der Geometrie in der Schule (wieder) einen höheren Stellenwert zu verschaffen. Der Arbeitskreis ist offen für Lehrende aller Schularten, für Studienseminare, Hochschullehrende und alle an Geometrieunterricht Interessierten darüber hinaus. Einen umfassenden Überblick über das Themenspektrum des Arbeitskreises geben unsere Tagungsbände, von denen die meisten auf unserer Homepage www.ak-geometrie.de zur Verfügung stehen.
Termine & Veranstaltungen
Der AK Geometrie führt jährlich im September seine Herbsttagung durch. Die genauen Termine und Themen enthält unsere Homepage: www.ak-geometrie.de
Außerdem ist es Tradition des Arbeitskreises, auf der jährlichen Frühjahrstagung der GDM zusammenzukommen.
Link zur externen AK Homepage
Ziele und Inhalte
Ziele des Arbeitskreises sind die Reflexion und Weiterentwicklung des Mathematikunterrichts in der Grundschule in Praxis und Theorie und die weitere Entwicklung der Didaktik der Grundschulmathematik als Wissenschaft. Der Arbeitskreis verfolgt diese Zielsetzungen durch die Förderung der Kooperation aller am Mathematikunterricht in Praxis, Theorie und Forschung unmittelbar oder mittelbar Beteiligten.
Tagungen und Publikationen
Aktuelle Informationen zum Arbeitskreis Grundschule finden Sie auf der Webseite des AK Grundschule: http://grundschule.didaktik-der-mathematik.de/
Mailingliste
Wenn Sie Informationen rund um den AK Grundschule erhalten möchten, tragen Sie sich bitte in die Mailingliste ein.
Sprecher:innenrat
Kathrin Akinwunmi
Marei Fetzer
Leitung
Christine Bescherer
Stefanie Rach
Angela Schmitz
E-Mail: sprecher_innen@hochschulmathematik.de
Ziele und Inhalte:
Speziell unsere Herbsttagungen dienen dem Austausch von Interessierten aus Universitäten und Fachhochschulen aus Fachdidaktik, allgemeiner Hochschuldidaktik und natürlich aus dem Fach Mathematik selbst.
Aktuelles, Termine Veranstaltungen und weitere Informationen:
https://madipedia.de/wiki/Arbeitskreis_Hochschulmathematikdidaktik
Leitung/ Sprecher des AK’s
Prof. Dr. Birgit Brandt birgit.brandt@zlb.tu-chemnitz.de
Prof. Dr. Marcus Schütte marcus.schuette@uni-hamburg.de
Entwicklung
Aus einer Kritik an den herrschenden Forschungsprogrammen der Unterrichtsforschung heraus hat Terhart 1978 den Begriff der Interpretativen Unterrichtsforschunggeprägt und diesen mit einer symbolisch-interaktionistischen Konzeptualisierung begründet. Der im selben Jahr erschienene Aufsatz „Kommunikationsmuster im Mathematikunterricht – Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung“ (Bauersfeld 1978), in dem Heinrich Bauersfeld das Trichtermuster als eine von Lehrperson und Lernenden gemeinsam hervorgebrachte Stereotype der Unterrichtswirklichkeit beschreibt, kann als der Anfang der interpretativen Unterrichtsforschung in der deutschsprachigen Mathematikdidaktik gesehen werden. Die Bielefelder Arbeitsgruppe um Bauersfeld am IDM hat sich in der Folge mit ersten Fallstudien der Eigengesetzlichkeit des schulischen Alltags genähert und dabei auch die methodologische und methodische Auseinandersetzung mit der Entwicklung wissenschaftlicher Begriffe und Konzepte aus dem konkreten Feld heraus in der Mathematikdidaktik vorangetrieben. Dieser damals neue Forschungsansatz wurde bald von weiteren Forschungsgruppen in der Mathematikdidaktik aufgegriffen, und es entstand eine bundesweit agierende Arbeitsgruppe Interpretative Unterrichtsforschung, die sich ab Mitte der 80’er Jahre des letzten Jahrhunderts regelmäßige auf Arbeitstagungen zu gemeinsamen Interpretationssitzung unterschiedlicher Unterrichtsmitschnitte traf.
Zielsetzung
Der Arbeitskreis Interpretative Forschung der Mathematikdidaktik sieht sich der Tradition der Interpretativen (Unterrichts-)Forschung verpflichtet und möchte insbesondere auch deren wissenschaftlichen Anspruch empirisch gegründeter Theoriebildung mit Nachdruck vertreten: “Ihre Leistungsfähigkeit sehen wir in ihrer spezifischen, soziologisch orientierten Perspektive begründet, die geeignet ist, den Mathematikunterricht ohne Wenn und Aber als banales soziales Ereignis wahrnehmbar zu machen. Sie führt zu Theorien mit großem empirischen, kontextbezogenen Gehalt, die sich bewusst von Theorieentwicklungen mit möglichst globalem, dekontextualisiertem Geltungsanspruch distanziert.” (Jungwirth/Krummheuer 2006, 8)
Denkrahmen
Interpretative Forschung versteht sich als Denkrahmen und bietet einen spezifischen theoretischen Zugriff auf die Welt, der den Forschungsprozess in der Konzeptualisierung des Forschungsgegenstandes und der methodischen Annäherung an denselben vorstrukturiert. Dieser Denkrahmen ist dabei dem jeweils konkreten Forschungsgegenstand anzupassen – der Ansatz ist somit nicht auf bestimmte mathematische Inhaltsfelder oder Altersstufen der Lernenden begrenzt und ist offen für viele Themen und Fragen. Gemeinsam ist jedoch die interpretative Grundhaltung im Sinne des Symbolischen Interaktionismus, der im Laufe der nun über 30-jährigen Geschichte je nach Verortung der Praxis oder Zielrichtung der Begriffsentwicklung durch weitere theoretische Konzepte erweitert und ergänzt wurde.
Um dem postulierten Ziel des wissenschaftlichen Anspruchs gerecht zu werden, besteht eine Zielsetzung des Arbeitskreises Interpretative Forschung in einer Auseinandersetzung mit den Verflechtungen und Verträglichkeiten theoretischer Basiskonzepte und Denkfiguren für die mathematikdidaktische Forschung. Diese methodologische Diskussion soll in enger Beziehung zum wissenschaftlichen Diskurs außerhalb der mathematikdidaktischen Forschung geführt werden.
Die interpretative Forschung ist dem qualitativen Forschungsparadigma zuzuordnen und beruft sich für die Rekonstruktionen des Unterrichtsgeschehens „aus der Binnenperspektive der Handelnden“ (Maier/Voigt 1991, S. 8) auf die hermeneutischen Traditionen der Sozial- und Geisteswissenschaften. Die interpretative Forschung nimmt eine beschreibende Funktion ein, die mit dem Ziel einer Ausarbeitung theoretischer Konstrukte zum begründeten Verstehen der Handlungsprozesse und Funktionsweisen dieser Alltagspraxis verbunden ist und gerade in dieser rekonstruktiven Haltung Ansatzpunkte zur Veränderung und zur Etablierung neuer Unterrichtswirklichkeiten sieht. Ein wesentliches Betätigungsfeld des zu gründenden Arbeitskreises sind Arbeitstagungen mit gemeinsamen Interpretationssitzungen zu Dokumenten mathematischer Entwicklungsprozesse bzw. aus dem Alltag der Lehr-Lern-Praxis zur Etablierung und Wahrung einer interpretativen Forschungspraxis mit methodisch kontrollierter Analyseverfahren ohne implizite Bewertung der rekonstruierten Wirklichkeiten.
Forschungsfeld
Das mathematikdidaktische Forschungsfeld ist in den letzten 30 Jahren breiter geworden. Auch wenn die schulische Alltagspraxis noch immer ein Schwerpunkt der interpretativ orientierten Forschungsprojekte ausmacht, so lassen sich doch zahlreiche Projekte finden, die diesen Rahmen verlassen und z.B. auch mathematische Entwicklungsprozesse in anderen sozialen Institutionen betrachten. Dieser Entwicklung kommen wir in der Namensgebung des neu zu gründenden Arbeitskreises nach, indem wir mit Interpretative Forschung in der Mathematikdidaktik auf den Zusatz Unterricht verzichten.
Termine & Veranstaltungen
Leitung
Gilbert Greefrath, Universität Münster greefrath@uni-munster.de
Hans-Stefan Siller, Universität Würzburg hans-stefan.siller@mathematik.uni-wuerzburg.de
Ziele und Inhalte
Mathematik ist nicht nur eine abstrakte, logische Wissenschaft, Mathematik ist auch eine Grundlage für viele andere Wissenschaften und für viele Dinge unseres alltäglichen Lebens. Um dies auch den Schülerinnen und Schülern zu vermitteln, sollten authentische Realitätsbezüge im Mathematikunterricht hergestellt werden. Doch woher nimmt man die Aufgaben? Wie integriert man diese Aufgaben konkret in den Mathematikunterricht?
Im Jahre 1990 hat sich in ISTRON Bay auf Kreta eine internationale Gruppe konstituiert mit dem Ziel, durch Koordination und Initiierung von Innovationen – insbesondere auch auf europäischer Ebene – zur Verbesserung des Mathematikunterrichts beizutragen. Diese Gruppe, die sich nach dem Gründungsort genannt hat, besteht aus acht Mathematikern und Mathematikdidaktikern aus Europa und USA.
Schwerpunkt der Aktivitäten soll sein, Realitätsbezüge des Mathematikunterrichts zu fördern. Konstitutiv dabei ist die Netzwerk-Idee: Die Verbindung von Aktivitäten und der sie tragenden Menschen auf lokaler, regionaler und internationaler Ebene. Hieran soll auch das Logo erinnern.
Seit 1991 gibt es – als Teil dieses Netzwerkes – eine deutsch-österreichische ISTRON-Gruppe. Ihr gehören Lehrende aus Schulen und Hochschulen an. Die Gruppe hat – ganz im Sinne der Netzwerk-Idee – wechselseitige Verbindungen sowohl mit Lehrenden auf lokaler und regionaler Ebene als auch mit der internationalen Community. Zu den Aktivitäten der Gruppe gehören die Dokumentation und Entwicklung von schulgeeigneten Materialien zum realitätsorientierten Lehren und Lernen von Mathematik sowie alle Arten von Anstrengungen, solche Materialien in die Schulpraxis einzubringen – durch Lehrerbildung, Schulbücher und Bildungspläne sowie natürlich vor allem durch direkte Arbeit vor Ort mit Lernenden. Die ISTRON-Gruppe bietet Fortbildungen für Lehrerinnen und Lehrer an und gibt eine Schriftenreihe mit entsprechenden Unterrichtseinheiten heraus.
Termine & Veranstaltungen
ISTRON-Tagung 2022
Link zur externen AK Homepage
Leitung
Mailadresse der Sprecher:innengruppe: sprechergruppe-ak-lll@mathe-labor.de
Ziele und Inhalte
An immer mehr Standorten gibt es außerschulische Lernorte Mathematik mit denen in der Regel mehrere Ziele verfolgt werden.
Der Arbeitskreis bündelt Aktivitäten zu Entwicklung, Umsetzung, Forschung und Lehrkräfteprofessionalisierung in den Lehr-Lern-Laboren Mathematik.
Termine & Veranstaltungen
Link zur externen AK Homepage
https://madipedia.de/wiki/Arbeitskreis_Lehr-Lern-Labore_Mathematik
Leitung
Ziele und Inhalte
Der GDM-Arbeitskreis Mathematik und Bildung beschäftigt sich im weiten Sinne mit bildungstheoretischen und bildungskritischen Fragestellungen bezogen auf Mathematikunterricht. Dabei werden auch aktuelle Themen der Mathematikdidaktik, wie z. B. Digitalisierung, aufgegriffen und aus bildungstheoretischen und bildungskritischen Perspektiven beleuchtet. Diese aktuellen Schwerpunkte geben den traditionellen Herbsttagungen eine thematische Rahmung, aber es sind auch immer Vorträge, Denkanstöße und Diskussionsbeiträge zur übergeordneten Zielsetzung des Arbeitskreises herzlich willkommen.
Aktuelles
Statt einer Herbsttagung findet 2022 eine Gedenktagung für Andreas Vohns statt, der sich lange Zeit im Arbeitskreis Mathematik und Bildung engagiert hat.
https://www.uni-siegen.de/fb6/didaktik/veranstaltungen/mabind-22.html
An der Mitarbeit am Arbeitskreis Interessierte können sich bei den Sprecher:innen für den Mailverteiler des AK anmelden.
Termine & Veranstaltungen
28.–30.10.2022 „Mathematische Bildung neu denken –
Andreas Vohns erinnern und weiterdenken“, Universität Siegen,
https://www.uni-siegen.de/fb6/didaktik/veranstaltungen/mabind-22.html
Eine Übersicht über vergangene Herbsttagungen finden Sie unter https://madipedia.de/wiki/Arbeitskreis_Mathematik_und_Bildung
Sprecherteam des Arbeitskreises:
Gabriella Ambrus, Eötvös Loránd Universität Budapest
E-Mail: ambrus.gabriella@ttk.elte.hu
Johann Sjuts, Universität Osnabrück
E-Mail: sjuts-leer@t-online.de
Ziele und Inhalte
Buchreihe
„Mathematiklehren und -lernen in Ungarn“ (Herausgegeben von Éva Vásárhelyi und Johann Sjuts), WTM-Verlag Münster
Bisher erschienen:
Band 1: Éva Vásárhelyi & Johann Sjuts (Hrsg.) „Auch wenn A falsch ist, kann B wahr sein. Was wir aus Fehlern lernen können. Ervin Deák zu Ehren“ (308 Seiten) WTM 2019
Band 2: Gabriella Ambrus & Johann Sjuts & Ödön Vancsó & Éva Vásárhelyi (Hrsg.) „Komplexer Mathematikunterricht. Die Ideen von Tamás Varga in aktueller Sicht“ (391 Seiten) WTM 2020
Band 3: Éva Vásárhelyi & Johann Sjuts (Hrsg.) „Theoretische und empirische Analysen zum geometrischen Denken“ (420 Seiten) WTM 2021
Band 4: Gabriella Ambrus & Johann Sjuts & Éva Vásárhelyi (Hrsg.) „Mathematische Zeitschriften und Wettbewerbe für Kinder und Jugendliche. Förderung für Talentierte und Interessierte über Grenzen hinweg“ (406 Seiten) WTM 2022 (im Druck)
Aktuelles
Zum Band 5 „Mathematik und mathematisches Denken“ (2023) gibt es bereits Vorüberlegungen und Vorarbeiten.
Die Tagung CERME 13 (The 13th Congress of the European Society for Research in Mathematics Education) findet vom 9. bis zum 14. Juli 2023 in Budapest statt.
Termine und Veranstaltungen
7.Arbeitskreistagung: Online-Frühjahrstreffen am 22. April 2022
Sitzung des Arbeitskreises im Rahmen der GDM-Jahrestagung 2022 in Frankfurt (genauer Zeitpunkt noch offen)
Link zur externen Homepage des Arbeitskreises
Leitung
Prof. Dr. Sebastian Schorcht (sebastian.schorcht@tu-dresden.de)
Prof. Dr. Barbara Schmidt-Thieme (bschmidt-thieme@imai.uni-hildesheim.de)
Prof. Dr. Ysette Weiss (yweiss@uni-mainz.de)
Ziele und Inhalte
Der Arbeitskreis “Mathematikgeschichte und Unterricht” der Gesellschaft für Didaktik der Mathematik existiert seit 1995. Er wurde von Mitgliedern der Fachsektion “Geschichte der Mathematik” der Deutschen Mathematiker-Vereinigung initiiert. Der Arbeitskreis vereinigt Mathematikhistorikerinnen und -historiker sowie historisch interessierte Mathematikdidaktikerinnen und -didaktiker, Mathematiklehrkräfte und Mathematikerinnen und Mathematiker.
Folgende offene Sammlung der Forschungsinhalte werden im Arbeitskreis diskutiert:
Termine & Veranstaltungen
University of Salerno (Department of Mathematics) Fisciano (SA), Italy.
Link zur externen AK Homepage
Leitung
Florian Schacht florian.schacht@uni-due.de
Frank Reinhold frank.reinhold@ph-freiburg.de
Ziele und Inhalte
Der Arbeitskreis versteht sich als eine Plattform für die fachdidaktische Diskussion der Potentiale und Phänomene des Einsatzes digitaler Werkzeuge im Mathematikunterricht an Schulen und Hochschulen. Dabei nimmt er insbesondere die Wirkungen dieser Werkzeuge auf das Lernen und Lehren von Mathematik in den Blick:
Zu einer kritischen und fruchtbaren Diskussion der Wirkungen digitaler Werkzeuge auf das Lernen und Lehren von Mathematik gehören die Perspektiven von Forschung und Praxis gleichermaßen. Der Arbeitskreis ist daher Ort für theoretische Reflexionen, empirische Beobachtungen und unterrichtspraktische Ideen.
Mitgliedschaft und Mailingliste
Offizielle Mitteilungen des AK erfolgen über die Mailingliste des Arbeitskreises. Bitte tragen Sie sich hier ein, wenn Sie die Einladungen zur Mitgliederversammlung und die Aussendungen zu den AK-Tagungen erhalten möchten.
Aktuelles
Im Herbst 2022 wird aufgrund der zeitlichen Nähe zur Bundestagung der GDM in Frankfurt keine Herbsttagung des Arbeitskreises stattfinden.
Leitung
Andras Batkai
Frühjahrstagung des GDM-Arbeitskreises “Mathematikunterricht und Mathematikdidaktik in Österreich” vom 14. bis 15. Juni 2024 im
Ein Programm wird zeitgerecht ausgesandt, fix ist die Wahl eines/r Sprechers/in bzw. eines Sprecher*innenteams. Diesbezügliche Vorschläge bitte an den jetzigen Sprecher Andras Batkai (PH Vorarlberg) unter
Kommissarische Leitung
Sarah Beumann (beumann@uni-wuppertal.de)
Sebastian Geisler (geisler@imai.uni-hildesheim.de)
Aktuelles
Der AK Weltbilder ist vor vielen Jahren aus der Idee von Günter Törner entstanden. In den letzten Jahren wurde der AK nicht weiter fortgeführt. Im Zuge der Neugestaltung der GDM Homepage kam die Idee auf, diesen AK wieder zu beleben. So kam es zu der kommissarischen Leitung von Sebastian Geisler und Sarah Beumann, in Rücksprache mit Günter Törner, Benjamin Rott und Reinhard Oldenburg.
Zur Gründungszeit des AK Weltbilder war die Beliefsforschung stark geprägt durch die Arbeiten von Grigutsch, Raatz und Törner und der dortigen Definition der mathematischen Weltbilder. Aktuell ist die Forschung weiter voran geschritten, weitere Strömungen haben sich gebildet (auch unabhängig der Mathematikdidaktik) und verschiedenste Einflussfaktoren konnten herausgestellt werden. Damit diese Breite auch Anklang in der AK-Arbeit findet, würden wir den Titel des AK gerne größer fassen. Mittlerweile werden sowohl kognitive als auch affektive Komponenten mit den mathematischen Beliefs assoziiert, sodass wir eine Umbenennung in “Affekt, Motivation und Beliefs“ vorschlagen. Diesen Vorschlag haben wir auf der GDM-Tagung mit allen Interessierten abgesprochen und dieser Vorschlag wurde einstimmig von allen Anwesenden befürwortet.
Zukünftig soll neben einem Treffen auf der GDM, eine Herbsttagung durchgeführt werden. Die genaue Zielsetzung des AKs, die Wahl der AK-Leitung sowie erste Ideen sollen auf einer kommenden Frühjahrstagung (vor. im März) in Wuppertal mit allen Interessierten ausgearbeitet werden.
Leitung
Nina Sturm nina.sturm@ph-ludwigsburg.de
Benjamin Rott benjamin.rott@uni-koeln.de
Ziele und Inhalte
Der Arbeitskreis Problemlösen richtet sich an Wissenschaftler*innen ebenso wie Lehrer*innen sowie alle weiteren Interessierten, die sich mit der Forschung zum (mathematischen) Problemlösen und zur Heuristik im weiteren Sinne beschäftigen. Ziele des Arbeitskreises sind die Verbesserung des Mathematikunterrichts hinsichtlich des problemorientierten Lehrens und Lernens, die Förderung der zahlreichen Diskussionen und des Austauschs sowie der Aufbau möglicher Kooperationen, um diesen Bereich gezielt weiter zu entwickeln. Mathematikdidaktische Forschung und Lehrerbildung werden im Arbeitskreis aufeinander bezogen, um sowohl der Entwicklung einer neuen Unterrichtskultur als auch der Entwicklung der Kultur der Lehrerbildung und -fortbildung zu dienen.
Aktuelles
Im Jahr 2022 wird es keine Herbsttagung geben, da die GDM-Tagung in den Herbst verlegt wurde. Im Jahr 2023 ist eine gemeinsame Herbsttagung mit dem AK Ungarn in Budapest geplant.
Termine & Veranstaltungen
Herbsttagung 2023 (Infos folgen)
Link zur externen AK Homepage:
https://madipedia.de/index.php?title=Arbeitskreis_Problemlösen
Leitung
Prof. Dr. Anke Lindmeier anke.lindmeier@uni-jena.de
Prof. Dr. Daniel Sommerhoff sommerhoff@leibniz-ipn.de
Ziele und Inhalte
Der AK Psychologie und Mathematikdidaktik wurde als nationale Gruppe nach dem internationalen Vorbild der International Group for the Psychology of Mathematics Education (IG PME) gegründet. Er schließt sich den Zielen der IGPME an. Er wurde um 1980 (und sicher vor 1986) ins Leben gerufen. Charakteristisch ist seine stark interdisziplinäre Ausrichtung und er spricht mathematikdidaktisch Forschende mit deutlicher Ausrichtung – in Theorie und Methoden – auf die Bezugswissenschaft Psychologie an. Er ist offen für Teilnehmende aus allen Arbeitsgruppen und Standorten.
Aktuelles
Termine & Veranstaltungen
Link zur externen AK Homepage
Leitung
Gert Kadunz gert.kadunz@aau.at
Christof Schreiber christof.schreiber@math.uni-giessen.de
Barbara Ott barbara.ott@phsg.ch
Ziele und Inhalte
In weitgehender Übereinstimmung mit den Intentionen des Arbeitskreises, die schon bei der Gründung von M. Hoffmann formuliert wurden, orientieren sich die Aktivitäten an grundlegenden Problemen mathematikdidaktischer Forschung, die mit dem Begriff der Repräsentation umschrieben werden. Dafür lassen sich mindestens drei Gründe anführen:
Das Ziel des Arbeitskreises ist es, die Semiotik, also die ‘Theorie der Zeichen’, als ein Instrument zur Bearbeitung dieser und ähnlicher Probleme zu entwickeln und damit die Theoriediskussion in der Mathematikdidaktik zu bereichern.
Aktuelles
Aktuelle Hinweise, beispielweise zu Publikationen oder der Herbsttagung, finden Sie auf der externen AK Homepage.
Termine & Veranstaltungen
Herbsttagung 2022
Datum: 28.09. – 30.09.2022
Ort: Abtei Frauenwörth, Chiemsee
Link zur externen AK Homepage
Leitung
Karin Binder karin.binder@math.lmu.de
Tobias Rolfes rolfes@math.uni-frankfurt.de
Ziele und Inhalte
Der Arbeitskreis Stochastik in der Gesellschaft für Didaktik der Mathematik (GDM) besteht seit 1981. Zur Zeit engagieren sich in ihm etwa 50 Personen (vor allem aus aus Universitäten, Schulen und Studienseminaren) für die Verbesserung des schulischen Stochastikunterrichts.
Der Arbeitskreis führt jedes Jahr im Herbst eine Fachtagung zu einem Schwerpunktthema durch, die sogenannte Herbsttagung. Sie ruht auf fünf Säulen:
Der Arbeitskreis kooperiert eng mit dem Verein zur Förderung des schulischen Stochastikunterrichts sowie mit dessen Zeitschrift Stochastik in der Schule, in der regelmäßig Tagungsbeiträge publiziert werden.
Aktuelles
Link zur Website
Leitung
Astrid Brinkmann astrid.brinkmann@math-edu.de
Matthias Brandl Matthias.Brandl@Uni-Passau.de
Thomas Borys thomas.borys@ph-karlsruhe.de
Ziele und Inhalte
Im Arbeitskreis „Vernetzungen im Mathematikunterricht“ der GDM, gegründet 2009, wird eine wird eine altbekannte und zentrale Forderung an das Lernen von Mathematik neu betrachtet: Mathematische Kenntnisse und Fähigkeiten sollen nicht isoliert voreinander, sinnlos und beziehungslos nebeneinander gelehrt und gelernt werden, sondern in ihrer Wechselbeziehung zueinander, also vernetzt.
Inhaltlich geht es in unserem Arbeitskreis darum, innermathematische Beziehungen zwischen den in der Schule üblicherweise zu unterrichtenden Teilgebieten aufzuzeigen und deren Vernetzungsmöglichkeiten ins Bewusstsein der Lehrenden zu rücken. Beim Erwerb zentraler Kompetenzen wie Modellieren und Problemlösen sollen möglichst viele Gebiete der Schulmathematik und auch verschiedene Repräsentationen mathematischer Objekte vernetzt werden, um einen reichhaltigen Vorrat an Werkzeugen und Problemlösetechniken zu erhalten. Auch geht es um eine ganzheitliche (Ein-)Sicht in die Mathematik. Schüler/innen sollen erkennen, dass Mathematik weit mehr ist als das Berechnen von (nummerischen) Ergebnissen mit Hilfe vorgegebener Formeln.
Die Leitidee Vernetzung wird im Unterricht zudem eigenständig thematisiert und ist damit auch Inhalt unseres Arbeitskreises. Das betrifft sowohl Methoden zum Erkennen und Lernen von Zusammenhängen und Vernetzungen, wie Mind Mapping, Concept Mapping oder Lernlandkarten, als auch System Dynamics als Schlüssel zur Modellierung und zum Verständnis von vernetzten Problemen unserer Welt, insbesondere aus Umwelt, Natur und Ökonomie.
Methodisch wirkt der Anspruch „vernetzendes Lernen“ zunächst wie eine weitere schwer erfüllbare Forderung der Mathematikdidaktik an die ohnehin schon stark geforderten Mathematiklehrer/innen. Tatsächlich zeigen aber Unterrichtserfahrungen, die wir gesammelt haben und vermitteln wollen, dass gerade die Bemühungen um vernetzenden Mathematikunterricht entlastend und motivierend wirken – wer vernetzend unterrichtet, macht es den Lernenden, aber auch sich selbst leichter!
Sozial „vernetzend“ ist auch ein Anspruch an uns selbst, vielfältige Ideen und Vorschläge zum Mathematikunterricht in kooperativer und kollegialer Form aufzunehmen und die entsprechenden Personen als Mitdiskutierende und Mitarbeitende einzubeziehen und soweit gewünscht in den Arbeitskreis zu integrieren.
Aktuelles
Soeben ist der Band Nr. 7 der Reihe Mathe vernetzt bei MUED erschienen. Dieser kann unter dem folgenden Link erworben werden:
Der Band erscheint unten auf der Seite unter „neu“.
Wir möchten allen danken, die zum Gelingen des Bandes beigetragen haben. Wir wünschen dem Band eine große Leserschaft.
Link zur externen AK Homepage
Leitung
Prof. Dr. Michael Meyer, Universität zu Köln (michael.meyer@uni-koeln.de)
Prof. Dr. Leander Kempen, Universität Greifswald (leander.kempen@uni-greifswald.de)
Ziele und Inhalte
Argumentieren, Begründen und Beweisen gehören zu den zentralen Tätigkeiten in der Mathematik und sind entsprechend von hoher Relevanz für didaktische Überlegungen zum Mathematiklernen auf allen Stufen des Bildungsgangs.
Mit dem 2022 gegründeten GDM-Arbeitskreis „Argumentieren, Begründen, Beweisen“ wird der Forschungscommunity ein Ort gegeben, an dem (a) neue Forschungsansätze zielgruppenspezifisch präsentiert werden können, (b) systematisch über entsprechende Tätigkeiten diskutiert werden kann, (c) sich Forscherinnen und Forscher zu entsprechenden Themenbereichen vernetzen können und (d) gemeinsame Forschungsaktivitäten geplant und initiiert werden können.
Kontaktieren Sie uns gerne per Mail.
Für allgemeine Anfragen zu dem Verein nutzen Sie bitte das nebenstehende Kontaktformular.